We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cs.DS

Change to browse by:

cs

References & Citations

DBLP - CS Bibliography

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Computer Science > Data Structures and Algorithms

Title: Dynamic PageRank: Algorithms and Lower Bounds

Abstract: We consider the PageRank problem in the dynamic setting, where the goal is to explicitly maintain an approximate PageRank vector $\pi \in \mathbb{R}^n$ for a graph under a sequence of edge insertions and deletions. Our main result is a complete characterization of the complexity of dynamic PageRank maintenance for both multiplicative and additive ($L_1$) approximations.
First, we establish matching lower and upper bounds for maintaining additive approximate PageRank in both incremental and decremental settings. In particular, we demonstrate that in the worst-case $(1/\alpha)^{\Theta(\log \log n)}$ update time is necessary and sufficient for this problem, where $\alpha$ is the desired additive approximation. On the other hand, we demonstrate that the commonly employed ForwardPush approach performs substantially worse than this optimal runtime. Specifically, we show that ForwardPush requires $\Omega(n^{1-\delta})$ time per update on average, for any $\delta > 0$, even in the incremental setting.
For multiplicative approximations, however, we demonstrate that the situation is significantly more challenging. Specifically, we prove that any algorithm that explicitly maintains a constant factor multiplicative approximation of the PageRank vector of a directed graph must have amortized update time $\Omega(n^{1-\delta})$, for any $\delta > 0$, even in the incremental setting, thereby resolving a 13-year old open question of Bahmani et al.~(VLDB 2010). This sharply contrasts with the undirected setting, where we show that $\rm{poly}\ \log n$ update time is feasible, even in the fully dynamic setting under oblivious adversary.
Subjects: Data Structures and Algorithms (cs.DS)
Cite as: arXiv:2404.16267 [cs.DS]
  (or arXiv:2404.16267v1 [cs.DS] for this version)

Submission history

From: Slobodan Mitrović [view email]
[v1] Thu, 25 Apr 2024 00:30:28 GMT (61kb)

Link back to: arXiv, form interface, contact.