We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Magnetic Resonance Frequency Shift Caused by Nonuniform Field and Boundary Relaxation

Abstract: Magnetic field inhomogeneity is usually detrimental to magnetic resonance (MR) experiments. It is widely recognized that a nonuniform magnetic field can lead to an increase in the resonance line width, as well as a reduction in sensitivity and spectral resolution. However, nonuniform magnetic field can also cause shift in resonance frequency, which received far less attention. In this work, we investigate the frequency shift under arbitrary nonuniform magnetic field and boundary relaxation by applying perturbation theory to the Torrey equation. Several compact frequency shift formulas are reported. We find that the frequency shift is mainly determined by $B_z$ distribution (rather than the transverse field components in previous study) and has important dependence on boundary relaxation. Furthermore, due to the difference of boundary relaxation and high order perturbation correction, this frequency shift is spin-species dependent, which implies a systematic error in many MR based precision measurements such as NMR gyroscope and comagnetometers. This insight provides a potential tool for understanding the unexplained isotope shifts in recent NMR gyroscope and new physics searching experiments that utilize comagnetometers. Finally, we propose a new tool for wall interaction research based on the frequency shift's dependency on boundary relaxation.
Subjects: Quantum Physics (quant-ph); Atomic Physics (physics.atom-ph)
Cite as: arXiv:2404.16671 [quant-ph]
  (or arXiv:2404.16671v1 [quant-ph] for this version)

Submission history

From: Xiangdong Zhang [view email]
[v1] Thu, 25 Apr 2024 15:16:53 GMT (220kb,D)

Link back to: arXiv, form interface, contact.