We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

physics.comp-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Physics > Computational Physics

Title: Atomistic Modelling of High-Entropy Layered Anodes and Their Electrolyte Interface

Abstract: Van der Waals (vdW) heterostructures have attracted intense interest worldwide as they offer several routes to design materials with novel features and wide-ranging applications. Unfortunately, at present, vdW heterostructures are restricted to a small number of stackable layers, due to the weak vdW forces holding adjacent layers together. In this work, we report on computational studies of a bulk vdW material consisting of alternating TiS2 and TiSe2 (TSS) vertically arranged layers as a potential candidate for anode applications. We use density functional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations to explore the effect of high entropy on several electrochemically relevant properties of the bulk heterostructure (TSS-HS) by substituting Mo6+ and Al3+ at the transition metal site (Ti4+). We also study the solvation shell formation at the electrode-electrolyte interface (EEI) using AIMD to determine Li-coordination. Based on the properties computed using DFT and AIMD we propose that high entropy TSS-HS (TSS-HE) might possess improved electrochemical performance over standard TSS-HS. Factors that could improve the performance of TSS-HE are 1) Less structural deformation, 2) Strong bonding (Metal-Oxygen), 3) Better electron mobility, 4) Wider operational voltage window, and 5) Faster Li-ion diffusion. Our observations suggest that 'high entropy' can be an effective strategy to design new anode materials for improving electrochemical performance of Li-ion batteries.
Subjects: Computational Physics (physics.comp-ph); Materials Science (cond-mat.mtrl-sci)
Cite as: arXiv:2404.16999 [physics.comp-ph]
  (or arXiv:2404.16999v3 [physics.comp-ph] for this version)

Submission history

From: Amreen Bano [view email]
[v1] Thu, 25 Apr 2024 19:41:05 GMT (3778kb)
[v2] Wed, 8 May 2024 13:44:27 GMT (2744kb)
[v3] Sun, 12 May 2024 19:46:17 GMT (2663kb)

Link back to: arXiv, form interface, contact.