We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.str-el

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Strongly Correlated Electrons

Title: Higgs Phases and Boundary Criticality

Abstract: Motivated by recent work connecting Higgs phases to symmetry protected topological (SPT) phases, we investigate the interplay of gauge redundancy and global symmetry in lattice gauge theories with Higgs fields in the presence of a boundary. The core conceptual point is that a global symmetry associated to a Higgs field, which is pure-gauge in a closed system, acts physically at the boundary under boundary conditions which allow electric flux to escape the system. We demonstrate in both Abelian and non-Abelian models that this symmetry is spontaneously broken in the Higgs regime, implying the presence of gapless edge modes. Starting with the U(1) Abelian Higgs model in 4D, we demonstrate a boundary phase transition in the 3D XY universality class separating the bulk Higgs and confining regimes. Varying the boundary coupling while preserving the symmetries shifts the location of the boundary phase transition. We then consider non-Abelian gauge theories with fundamental and group-valued Higgs matter, and identify the analogous non-Abelian global symmetry acting on the boundary generated by the total color charge. For SU($N$) gauge theory with fundamental Higgs matter we argue for a boundary phase transition in the O($2N$) universality class, verified numerically for $N=2,3$. For group-valued Higgs matter, the boundary theory is a principal chiral model exhibiting chiral symmetry breaking. We further demonstrate this mechanism in theories with higher-form Higgs fields. We show how the higher-form matter symmetry acts at the boundary and can spontaneously break, exhibiting a boundary confinement-deconfinement transition. We also study the electric-magnetic dual theory, demonstrating a dual magnetic defect condensation transition at the boundary. We discuss some implications and extensions of these findings and what they may imply for the relation between Higgs and SPT phases.
Comments: 33 pages, 12 figures, 1 table
Subjects: Strongly Correlated Electrons (cond-mat.str-el); High Energy Physics - Lattice (hep-lat); High Energy Physics - Theory (hep-th)
Cite as: arXiv:2404.17001 [cond-mat.str-el]
  (or arXiv:2404.17001v1 [cond-mat.str-el] for this version)

Submission history

From: Kristian Chung [view email]
[v1] Thu, 25 Apr 2024 19:46:12 GMT (4203kb,D)

Link back to: arXiv, form interface, contact.