We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

math.AP

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Mathematics > Analysis of PDEs

Title: Asymptotics for Sobolev extremals: the hyperdiffusive case

Authors: Grey Ercole
Abstract: Let $\Omega$ be a bounded, smooth domain of $\mathbb{R}^{N},$ $N\geq2.$ For $p>N$ and $1\leq q(p)<\infty$ set \[ \lambda_{p,q(p)}:=\inf\left\{ \int_{\Omega}\left\vert \nabla u\right\vert ^{p}\mathrm{d}x:u\in W_{0}^{1,p}(\Omega)\text{ \ and \ }\int_{\Omega }\left\vert u\right\vert ^{q(p)}\mathrm{d}x=1\right\} \] and let $u_{p,q(p)}$ denote a corresponding positive extremal function. We show that if $\lim\limits_{p\rightarrow\infty}q(p)=\infty$, then $\lim\limits_{p\rightarrow\infty}\lambda_{p,q(p)}^{1/p}=\left\Vert d_{\Omega }\right\Vert _{\infty}^{-1}$, where $d_{\Omega}$ denotes the distance function to the boundary of $\Omega.$ Moreover, in the hyperdiffusive case: $\lim\limits_{p\rightarrow\infty}\frac{q(p)}{p}=\infty,$ we prove that each sequence $u_{p_{n},q(p_{n})},$ with $p_{n}\rightarrow\infty,$ admits a subsequence converging uniformly in $\overline{\Omega}$ to a viscosity solution to the problem \[ \left\{ \begin{array} [c]{lll} -\Delta_{\infty}u=0 & \text{in} & \Omega\setminus M\\ u=0 & \text{on} & \partial\Omega\\ u=1 & \text{in} & M, \end{array} \right. \] where $M$ is a closed subset of the set of all maximum points of $d_{\Omega}.$
Comments: 13 pages
Subjects: Analysis of PDEs (math.AP)
MSC classes: 35B40, 35J92, 35J94
Cite as: arXiv:2404.17103 [math.AP]
  (or arXiv:2404.17103v1 [math.AP] for this version)

Submission history

From: Grey Ercole Ph. D. [view email]
[v1] Fri, 26 Apr 2024 01:38:21 GMT (11kb)

Link back to: arXiv, form interface, contact.