We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

math.NT

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Mathematics > Number Theory

Title: Hausdorff dimension of some exceptional sets in Lüroth expansions

Abstract: In this paper, we study the metrical theory of the growth rate of digits in L\"{u}roth expansions. More precisely, for $ x\in \left( 0,1 \right] $, let $ \left[ d_1\left( x \right) ,d_2\left( x \right) ,\cdots \right] $ denote the L\"{u}roth expansion of $ x $, we completely determine the Hausdorff dimension of the following sets \begin{align*}
E_{\mathrm{sup}}\left( \psi \right) =\Big\{ x\in \left( 0,1 \right] :\limsup\limits_{n\rightarrow \infty}\frac{\log d_n\left( x \right)}{\psi \left( n \right)}=1 \Big\} , \end{align*} \begin{align*}
E\left( \psi \right) =\Big\{ x\in \left( 0,1 \right] :\lim_{n\rightarrow \infty}\frac{\log d_n\left( x \right)}{\psi \left( n \right)}=1 \Big\} \end{align*} and \begin{align*}
E_{\mathrm{inf}}\left( \psi \right) =\Big\{ x\in \left( 0,1 \right] : \liminf_{n\rightarrow \infty}\frac{\log d_n\left( x \right)}{\psi \left( n \right)}=1 \Big\} , \end{align*} where $ \psi :\mathbb{N} \rightarrow \mathbb{R} ^+ $ is an arbitrary function satisfying $ \psi \left( n \right) \rightarrow \infty$ as $n\rightarrow \infty$.
Subjects: Number Theory (math.NT)
Cite as: arXiv:2404.17135 [math.NT]
  (or arXiv:2404.17135v1 [math.NT] for this version)

Submission history

From: Xinyun Zhang [view email]
[v1] Fri, 26 Apr 2024 03:24:01 GMT (16kb)

Link back to: arXiv, form interface, contact.