We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mes-hall

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Mesoscale and Nanoscale Physics

Title: Excitonic response in TMD heterostructures from first-principles: impact of stacking, twisting, and interlayer distance

Abstract: Van der Waals heterostructures of two-dimensional transition metal dichalcogenides provide a unique platform to engineer optoelectronic devices tuning their optical properties via stacking, twisting, or straining. Using ab initio Many-Body Perturbation Theory, we predict the electronic and optical (absorption and photoluminescence spectra) properties of MoS$_2$/WS$_2$ and MoSe$_2$/WSe$_2$ hetero-bilayers with different stacking and twisting. We analyse the valley splitting and optical transitions, and explain the enhancement or quenching of the inter- and intra-layer exciton states. Contrary to established models, that focus on transitions near the high-symmetry point K, our results include all possible transitions across the Brillouin Zone. This result, for a twisted Se-based heterostructures, in an interlayer exciton with significant electron density in both layers and a mixed intralayer exciton distributed over both MoSe$_2$ and WSe$_2$. We propose that it should be possible to produce an inverted order of the excitonic states in some MoSe$_2$/WSe$_2$ heterostructures, where the energy of the intralayer WSe$_2$ exciton is lower than that in MoSe$_2$. We predict the variability of the exciton peak positions ($\sim$100 meV) and the exciton radiative lifetimes, from pico- to nano-seconds, and even micro-seconds in twisted bilayers. The control of exciton energies and lifetimes paves the way towards applications in quantum information technologies and optical sensing.
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Cite as: arXiv:2404.17182 [cond-mat.mes-hall]
  (or arXiv:2404.17182v1 [cond-mat.mes-hall] for this version)

Submission history

From: Riccardo Reho [view email]
[v1] Fri, 26 Apr 2024 06:26:33 GMT (2728kb,D)

Link back to: arXiv, form interface, contact.