We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

eess.SY

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Electrical Engineering and Systems Science > Systems and Control

Title: Temporal Logic Resilience for Dynamical Systems

Abstract: We consider the notion of resilience for cyber-physical systems, that is, the ability of the system to withstand adverse events while maintaining acceptable functionality. We use finite temporal logic to express the requirements on the acceptable functionality and define the resilience metric as the maximum disturbance under which the system satisfies the temporal requirements. We fix a parameterized template for the set of disturbances and form a robust optimization problem under the system dynamics and the temporal specifications to find the maximum value of the parameter. Additionally, we introduce two novel classes of specifications: closed and convex finite temporal logics specifications, offering a comprehensive analysis of the resilience metric within these specific frameworks. From a computational standpoint, we present an exact solution for linear systems and exact-time reachability and finite-horizon safety, complemented by an approximate solution for finite-horizon reachability. Extending our findings to nonlinear systems, we leverage linear approximations and SMT-based approaches to offer viable computational methodologies. The theoretical results are demonstrated on the temperature regulation of buildings, adaptive cruise control and DC motors.
Subjects: Systems and Control (eess.SY)
Cite as: arXiv:2404.19223 [eess.SY]
  (or arXiv:2404.19223v1 [eess.SY] for this version)

Submission history

From: Adnane Saoud [view email]
[v1] Tue, 30 Apr 2024 02:51:29 GMT (329kb)

Link back to: arXiv, form interface, contact.