We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.stat-mech

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Statistical Mechanics

Title: Universal non-Hermitian flow in one-dimensional PT-symmetric quantum criticalities

Abstract: The critical point of a topological phase transition is described by a conformal field theory (CFT), where the finite-size corrections to the ground state energy are uniquely related to its central charge. We study the finite-size scaling of the energy of non-Hermitian Su-Schrieffer-Heeger (SSH) model with parity and time-reversal symmetry ($\mathcal{PT}$) symmetry. We find that under open boundary condition (OBC), the energy scaling $E(L)\sim c/L$ reveals a negative central charge $c=-2$ at the non-Hermitian critical point, indicative of a non-unitary CFT. Furthermore, we discover a universal scaling function capturing the flow of a system from Dirac CFT with $c=1$ to a non-unitary CFT with $c=-2$. The scaling function demonstrates distinct behaviors at topologically non-trivial and trivial sides of critical points. Notably, within the realm of topological criticality, the scaling function exhibits an universal rise-dip-rise pattern, manifesting a characteristic singularity inherent in the non-Hermitian topological critical points. The analytic expression of the scaling function has been derived and is in good agreement with the numerical results.
Comments: 18 pages, 4 figures
Subjects: Statistical Mechanics (cond-mat.stat-mech); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Quantum Physics (quant-ph)
Cite as: arXiv:2405.01640 [cond-mat.stat-mech]
  (or arXiv:2405.01640v1 [cond-mat.stat-mech] for this version)

Submission history

From: Xin-Chi Zhou [view email]
[v1] Thu, 2 May 2024 18:02:13 GMT (421kb,D)

Link back to: arXiv, form interface, contact.