We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

eess.SP

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Electrical Engineering and Systems Science > Signal Processing

Title: Enhancing NLoS RIS-Aided Localization with Optimization and Machine Learning

Abstract: This paper introduces two machine learning optimization algorithms to significantly enhance position estimation in Reconfigurable Intelligent Surface (RIS) aided localization for mobile user equipment in Non-Line-of-Sight conditions. Leveraging the strengths of these algorithms, we present two methods capable of achieving extremely high accuracy, reaching sub-centimeter or even sub-millimeter levels at 3.5 GHz. The simulation results highlight the potential of these approaches, showing significant improvements in indoor mobile localization. The demonstrated precision and reliability of the proposed methods offer new opportunities for practical applications in real-world scenarios, particularly in Non-Line-of-Sight indoor localization. By evaluating four optimization techniques, we determine that a combination of a Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) results in localization errors under 30 cm in 90 % of the cases, and under 5 mm for close to 85 % of cases when considering a simulated room of 10 m by 10 m where two of the walls are equipped with RIS tiles.
Comments: 6 pages, 13 figures
Subjects: Signal Processing (eess.SP)
DOI: 10.1109/GCWkshps58843.2023.10464631
Cite as: arXiv:2405.01928 [eess.SP]
  (or arXiv:2405.01928v1 [eess.SP] for this version)

Submission history

From: Rafael Aguiar [view email]
[v1] Fri, 3 May 2024 08:44:25 GMT (372kb)

Link back to: arXiv, form interface, contact.