We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

math.OC

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Mathematics > Optimization and Control

Title: A Symplectic Analysis of Alternating Mirror Descent

Abstract: Motivated by understanding the behavior of the Alternating Mirror Descent (AMD) algorithm for bilinear zero-sum games, we study the discretization of continuous-time Hamiltonian flow via the symplectic Euler method. We provide a framework for analysis using results from Hamiltonian dynamics, Lie algebra, and symplectic numerical integrators, with an emphasis on the existence and properties of a conserved quantity, the modified Hamiltonian (MH), for the symplectic Euler method. We compute the MH in closed-form when the original Hamiltonian is a quadratic function, and show that it generally differs from the other conserved quantity known previously in that case. We derive new error bounds on the MH when truncated at orders in the stepsize in terms of the number of iterations, $K$, and utilize this bound to show an improved $\mathcal{O}(K^{1/5})$ total regret bound and an $\mathcal{O}(K^{-4/5})$ duality gap of the average iterates for AMD. Finally, we propose a conjecture which, if true, would imply that the total regret for AMD goes as $\mathcal{O}\left(K^{\varepsilon}\right)$ and the duality gap of the average iterates as $\mathcal{O}\left(K^{-1+\varepsilon}\right)$ for any $\varepsilon>0$, and we can take $\varepsilon=0$ upon certain convergence conditions for the MH.
Comments: 95 pages, 3 figures
Subjects: Optimization and Control (math.OC); Computer Science and Game Theory (cs.GT); Machine Learning (cs.LG); Dynamical Systems (math.DS); Numerical Analysis (math.NA)
Cite as: arXiv:2405.03472 [math.OC]
  (or arXiv:2405.03472v1 [math.OC] for this version)

Submission history

From: Jonas Katona [view email]
[v1] Mon, 6 May 2024 13:47:09 GMT (959kb,D)

Link back to: arXiv, form interface, contact.