We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Strong-to-Weak Spontaneous Symmetry Breaking in Mixed Quantum States

Abstract: Symmetry in mixed quantum states can manifest in two distinct forms: strong symmetry, where each individual pure state in the quantum ensemble is symmetric with the same charge, and weak symmetry, which applies only to the entire ensemble. This paper explores a novel type of spontaneous symmetry breaking (SSB) where a strong symmetry is broken to a weak one. While the SSB of a weak symmetry is measured by the long-ranged two-point correlation function $\mathrm{Tr}(O_xO^{\dagger}_y\rho)$, the strong-to-weak SSB (SW-SSB) is measured by the fidelity $F(\rho, O_xO^{\dagger}_y\rho O_yO^{\dagger}_x)$, dubbed the fidelity correlator. We prove that SW-SSB is a universal property of mixed-state quantum phases, in the sense that the phenomenon of SW-SSB is robust against symmetric low-depth local quantum channels. We argue that a thermal state at a nonzero temperature in the canonical ensemble (with fixed symmetry charge) should have spontaneously broken strong symmetry. Additionally, we study non-thermal scenarios where decoherence induces SW-SSB, leading to phase transitions described by classical statistical models with bond randomness. In particular, the SW-SSB transition of a decohered Ising model can be viewed as the "ungauged" version of the celebrated toric code decodability transition. We confirm that, in the decohered Ising model, the SW-SSB transition defined by the fidelity correlator is the only physical transition in terms of channel recoverability. We also comment on other (inequivalent) definitions of SW-SSB, through correlation functions with higher R\'enyi indices.
Comments: 15+5 pages, 4 figures
Subjects: Quantum Physics (quant-ph); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Strongly Correlated Electrons (cond-mat.str-el)
Cite as: arXiv:2405.03639 [quant-ph]
  (or arXiv:2405.03639v1 [quant-ph] for this version)

Submission history

From: Jian-Hao Zhang [view email]
[v1] Mon, 6 May 2024 16:59:01 GMT (130kb,D)

Link back to: arXiv, form interface, contact.