We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.supr-con

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Superconductivity

Title: Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene

Abstract: Graphene-based, high quality two-dimensional electronic systems have emerged as a highly tunable platform for studying superconductivity. Specifically, superconductivity has been observed in both electron-doped and hole-doped twisted graphene moire systems, whereas in crystalline graphene systems, superconductivity has so far only been observed in hole-doped rhombohedral trilayer and hole-doped Bernal bilayer graphene (BBG). Recently, enhanced superconductivity has been demonstrated in BBG due to the proximity with a monolayer WSe2. Here, we report the observation of superconductivity and a series of flavor-symmetry-breaking phases in both electron- and hole-doped BBG/WSe2 device by electrostatic doping. The strength of the observed superconductivity is tunable by applied vertical electric fields. The maximum Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for the electron- and hole-doped superconductivity is about 210 mK and 400 mK, respectively. Superconductivities emerge only when applied electric fields drive BBG electron or hole wavefunctions toward the WSe2 layer, underscoring the importance of the WSe2 layer in the observed superconductivity. We find the hole-doped superconductivity violates the Pauli paramagnetic limit, consistent with an Ising-like superconductor. In contrast, the electron-doped superconductivity obeys the Pauli limit, even though the proximity induced Ising spin-orbit coupling is also notable in the conduction band. Our findings highlight the rich physics associated with the conduction band in BBG, paving the way for further studies into the superconducting mechanisms of crystalline graphene and the development of novel superconductor devices based on BBG.
Subjects: Superconductivity (cond-mat.supr-con); Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Cite as: arXiv:2405.04479 [cond-mat.supr-con]
  (or arXiv:2405.04479v1 [cond-mat.supr-con] for this version)

Submission history

From: Tingxin Li [view email]
[v1] Tue, 7 May 2024 16:45:01 GMT (7539kb)

Link back to: arXiv, form interface, contact.