We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

gr-qc

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

General Relativity and Quantum Cosmology

Title: Bounds on the charge of the graviton using gravitational wave observations

Abstract: If the graviton possesses a non-zero charge $q_g$, gravitational waves (GW) originating from astrophysical sources would experience an additional time delay due to intergalactic magnetic fields. This would result in a modification of the phase evolution of the observed GW signal similar to the effect induced by a massive graviton. As a result, we can reinterpret the most recent upper limits on the graviton's mass as constraints on the joint mass-charge parameter space, finding $|q_g|/{e} < 3\times 10^{-34}$ where $e$ represents the charge of an electron. Additionally, we illustrate that a charged graviton would introduce a constant phase difference in the gravitational waves detected by two spatially separated GW detectors due to the Aharonov-Bohm effect. Using the non-observation of such a phase difference for the GW event GW190814, we establish a mass-independent constraint $|q_g|/e < 2\times 10^{-26}$. To the best of our knowledge, our results constitute the first-ever bounds on the charge of the graviton. We also discuss various caveats involved in our measurements and prospects for strengthening these bounds with future GW observations.
Comments: 9 pages, 3 figures
Subjects: General Relativity and Quantum Cosmology (gr-qc); High Energy Astrophysical Phenomena (astro-ph.HE); High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Theory (hep-th)
Report number: LIGO DCC P2400160
Cite as: arXiv:2405.05038 [gr-qc]
  (or arXiv:2405.05038v1 [gr-qc] for this version)

Submission history

From: Sreejith Nair [view email]
[v1] Wed, 8 May 2024 13:11:02 GMT (687kb,D)

Link back to: arXiv, form interface, contact.