We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cs.CV

Change to browse by:

References & Citations

DBLP - CS Bibliography

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Computer Science > Computer Vision and Pattern Recognition

Title: MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection

Authors: Junzhuo Chen
Abstract: Large unlabeled data and difficult-to-identify anomalies are the urgent issues need to overcome in most industrial scene. In order to address this issue, a new meth-odology for detecting surface defects in in-dustrial settings is introduced, referred to as Memory Augmentation and Pseudo-Labeling(MAPL). The methodology first in-troduces an anomaly simulation strategy, which significantly improves the model's ability to recognize rare or unknown anom-aly types by generating simulated anomaly samples. To cope with the problem of the lack of labeling of anomalous simulated samples, a pseudo-labeler method based on a one-classifier ensemble was employed in this study, which enhances the robustness of the model in the case of limited labeling data by automatically selecting key pseudo-labeling hyperparameters. Meanwhile, a memory-enhanced learning mechanism is introduced to effectively predict abnormal regions by analyzing the difference be-tween the input samples and the normal samples in the memory pool. An end-to-end learning framework is employed by MAPL to identify the abnormal regions directly from the input data, which optimizes the ef-ficiency and real-time performance of de-tection. By conducting extensive trials on the recently developed BHAD dataset (in-cluding MVTec AD [1], Visa [2], and MDPP [3]), MAPL achieves an average im-age-level AUROC score of 86.2%, demon-strating a 5.1% enhancement compared to the original MemSeg [4] model. The source code is available at this https URL
Subjects: Computer Vision and Pattern Recognition (cs.CV); Image and Video Processing (eess.IV)
Cite as: arXiv:2405.06198 [cs.CV]
  (or arXiv:2405.06198v1 [cs.CV] for this version)

Submission history

From: Junzhuo Chen [view email]
[v1] Fri, 10 May 2024 02:26:35 GMT (432kb)

Link back to: arXiv, form interface, contact.