We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cs.LG

Change to browse by:

cs

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Computer Science > Machine Learning

Title: Input Snapshots Fusion for Scalable Discrete Dynamic Graph Nerual Networks

Abstract: Dynamic graphs are ubiquitous in the real world, yet there is a lack of suitable theoretical frameworks to effectively extend existing static graph models into the temporal domain. Additionally, for link prediction tasks on discrete dynamic graphs, the requirement of substantial GPU memory to store embeddings of all nodes hinders the scalability of existing models. In this paper, we introduce an Input {\bf S}napshots {\bf F}usion based {\bf Dy}namic {\bf G}raph Neural Network (SFDyG). By eliminating the partitioning of snapshots within the input window, we obtain a multi-graph (more than one edge between two nodes). Subsequently, by introducing a graph denoising problem with the assumption of temporal decayed smoothing, we integrate Hawkes process theory into Graph Neural Networks to model the generated multi-graph. Furthermore, based on the multi-graph, we propose a scalable three-step mini-batch training method and demonstrate its equivalence to full-batch training counterpart. Our experiments, conducted on eight distinct dynamic graph datasets for future link prediction tasks, revealed that SFDyG generally surpasses related methods.
Subjects: Machine Learning (cs.LG)
Cite as: arXiv:2405.06975 [cs.LG]
  (or arXiv:2405.06975v1 [cs.LG] for this version)

Submission history

From: Qingguo Qi [view email]
[v1] Sat, 11 May 2024 10:05:55 GMT (1241kb,D)

Link back to: arXiv, form interface, contact.