We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.str-el

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Strongly Correlated Electrons

Title: Gauging anomalous unitary operators

Abstract: Boundary theories of static bulk topological phases of matter are obstructed in the sense that they cannot be realized on their own as isolated systems. The obstruction can be quantified/characterized by quantum anomalies, in particular when there is a global symmetry. Similarly, topological Floquet evolutions can realize obstructed unitary operators at their boundaries. In this paper, we discuss the characterization of such obstructions by using quantum anomalies. As a particular example, we discuss time-reversal symmetric boundary unitary operators in one and two spatial dimensions, where the anomaly emerges as we gauge the so-called Kubo-Martin-Schwinger (KMS) symmetry. We also discuss mixed anomalies between particle number conserving U(1) symmetry and discrete symmetries, such as C and CP, for unitary operators in odd spatial dimensions that can be realized at the boundaries of topological Floquet systems in even spatial dimensions.
Comments: 21 pages, 1 figure
Subjects: Strongly Correlated Electrons (cond-mat.str-el); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Statistical Mechanics (cond-mat.stat-mech); High Energy Physics - Theory (hep-th)
DOI: 10.1103/PhysRevB.104.155144
Cite as: arXiv:2012.08384 [cond-mat.str-el]
  (or arXiv:2012.08384v1 [cond-mat.str-el] for this version)

Submission history

From: Yuhan Liu [view email]
[v1] Tue, 15 Dec 2020 15:57:30 GMT (259kb,D)

Link back to: arXiv, form interface, contact.