We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mes-hall

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Mesoscale and Nanoscale Physics

Title: Collective excitations of the Chern-insulator states in commensurate double moiré superlattices of twisted bilayer graphene on hexagonal boron nitride

Abstract: We study the collective excitation modes of the Chern insulator states in magic-angle twisted bilayer graphene aligned with hexagonal boron nitride (TBG/BN) at odd integer fillings ($\nu$) of the flat bands. For the $1 \times 1$ commensurate double moir\'{e} superlattices in TBG/BN at three twist angles ($\theta'$) between BN and graphene, self-consistent Hartree-Fock calculations show that the electron-electron interaction and the broken $C_{2z}$ symmetry lead to the Chern-insulator ground states with valley-spin flavor polarized HF bands at odd $\nu$. In the active-band approximation, the HF bands in the same flavor of TBG/BN are much more separated than those of the pristine TBG with TBG/BN having a larger intra-flavor band gap so that the energies of the lowest intra-flavor exciton modes of TBG/BN computed within the time-dependent HF method are much higher than those of TBG and reach about 20 meV, and the exciton wavefunctions of TBG/BN become less localized than those of TBG. The inter-flavor valley-wave modes in TBG/BN have excitation energies higher than 2.5 meV which is also much larger than that of TBG, while the spin-wave modes all have zero excitation gap. In contrast to TBG with particle-hole symmetric excitation modes for positive and negative $\nu$, the excitation spectrums and gaps of TBG/BN at positive $\nu$ are rather different from those at negative $\nu$. The quantitative behavior of the excitation spectrum of TBG/BN also varies with $\theta'$. Full HF calculations demonstrate that more HF bands besides the two central bands can have rather large contributions from the single-particle flat-band states, then the lowest exciton modes that determine the optical properties of the Chern insulator states in TBG/BN are generally the ones between the remote and flat-like bands, while the valley-wave modes have similar energies as those in the active-band approximation.
Comments: 9 pages, 6 figures
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Strongly Correlated Electrons (cond-mat.str-el)
DOI: 10.1103/PhysRevB.107.195434
Cite as: arXiv:2301.05359 [cond-mat.mes-hall]
  (or arXiv:2301.05359v1 [cond-mat.mes-hall] for this version)

Submission history

From: Xianqing Lin [view email]
[v1] Fri, 13 Jan 2023 01:47:38 GMT (6845kb,D)

Link back to: arXiv, form interface, contact.