We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

physics.optics

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Physics > Optics

Title: Chip-scale, CMOS-compatible, high energy passively Q-switched laser

Abstract: Chip-scale, high-energy optical pulse generation is becoming increasingly important as we expand activities into hard to reach areas such as space and deep ocean. Q-switching of the laser cavity is the best known technique for generating high-energy pulses, and typically such systems are in the realm of large bench-top solid-state lasers and fiber lasers, especially in the long wavelength range >1.8 um, thanks to their large energy storage capacity. However, in integrated photonics, the very property of tight mode confinement, that enables a small form factor, becomes an impediment to high energy application due to small optical mode cross-section. In this work, we demonstrate complementary metal-oxide-semiconductor (CMOS) compatible, rare-earth gain based large mode area (LMA) passively Q-switched laser in a compact footprint. We demonstrate high on-chip output pulse energy of >150 nJ in single transverse fundamental mode in the eye-safe window (1.9 um), with a slope efficiency ~ 40% in a footprint of ~9 mm2. The high energy pulse generation demonstrated in this work is comparable or in many cases exceeds Q-switched fiber lasers. This bodes well for field applications in medicine and space.
Subjects: Optics (physics.optics)
Cite as: arXiv:2303.00849 [physics.optics]
  (or arXiv:2303.00849v1 [physics.optics] for this version)

Submission history

From: Neetesh Singh [view email]
[v1] Wed, 1 Mar 2023 22:36:58 GMT (666kb)

Link back to: arXiv, form interface, contact.