We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Hybrid Ground-State Quantum Algorithms based on Neural Schrödinger Forging

Abstract: Entanglement forging based variational algorithms leverage the bi-partition of quantum systems for addressing ground state problems. The primary limitation of these approaches lies in the exponential summation required over the numerous potential basis states, or bitstrings, when performing the Schmidt decomposition of the whole system. To overcome this challenge, we propose a new method for entanglement forging employing generative neural networks to identify the most pertinent bitstrings, eliminating the need for the exponential sum. Through empirical demonstrations on systems of increasing complexity, we show that the proposed algorithm achieves comparable or superior performance compared to the existing standard implementation of entanglement forging. Moreover, by controlling the amount of required resources, this scheme can be applied to larger, as well as non permutation invariant systems, where the latter constraint is associated with the Heisenberg forging procedure. We substantiate our findings through numerical simulations conducted on spins models exhibiting one-dimensional ring, two-dimensional triangular lattice topologies, and nuclear shell model configurations.
Comments: 12 pages, 9 figures, 5 pages supplemental material
Subjects: Quantum Physics (quant-ph); Statistical Mechanics (cond-mat.stat-mech); Machine Learning (cs.LG)
Journal reference: Phys. Rev. Research 6, 023021 (2024)
DOI: 10.1103/PhysRevResearch.6.023021
Cite as: arXiv:2307.02633 [quant-ph]
  (or arXiv:2307.02633v2 [quant-ph] for this version)

Submission history

From: Oriel Kiss [view email]
[v1] Wed, 5 Jul 2023 20:06:17 GMT (6142kb,D)
[v2] Thu, 4 Apr 2024 16:27:08 GMT (6583kb,D)

Link back to: arXiv, form interface, contact.