We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Ancillary-file links:

Ancillary files (details):

Current browse context:

cond-mat.mtrl-sci

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Materials Science

Title: Efficient first principles based modeling via machine learning: from simple representations to high entropy materials

Abstract: High-entropy materials (HEMs) have recently emerged as a significant category of materials, offering highly tunable properties. However, the scarcity of HEM data in existing density functional theory (DFT) databases, primarily due to computational expense, hinders the development of effective modeling strategies for computational materials discovery. In this study, we introduce an open DFT dataset of alloys and employ machine learning (ML) methods to investigate the material representations needed for HEM modeling. Utilizing high-throughput DFT calculations, we generate a comprehensive dataset of 84k structures, encompassing both ordered and disordered alloys across a spectrum of up to seven components and the entire compositional range. We apply descriptor-based models and graph neural networks to assess how material information is captured across diverse chemical-structural representations. We first evaluate the in-distribution performance of ML models to confirm their predictive accuracy. Subsequently, we demonstrate the capability of ML models to generalize between ordered and disordered structures, between low-order and high-order alloys, and between equimolar and non-equimolar compositions. Our findings suggest that ML models can generalize from cost-effective calculations of simpler systems to more complex scenarios. Additionally, we discuss the influence of dataset size and reveal that the information loss associated with the use of unrelaxed structures could significantly degrade the generalization performance. Overall, this research sheds light on several critical aspects of HEM modeling and offers insights for data-driven atomistic modeling of HEMs.
Comments: DFT dataset available at this https URL
Subjects: Materials Science (cond-mat.mtrl-sci)
Cite as: arXiv:2403.15579 [cond-mat.mtrl-sci]
  (or arXiv:2403.15579v1 [cond-mat.mtrl-sci] for this version)

Submission history

From: Kangming Li [view email]
[v1] Fri, 22 Mar 2024 19:09:43 GMT (3244kb,AD)

Link back to: arXiv, form interface, contact.