We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

physics.optics

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Physics > Optics

Title: Achieving Optical Refractive Index of 10-Plus by Colloidal Self-Assembly

Abstract: This study demonstrates the developments of self-assembled optical metasurfaces to overcome inherent limitations in polarization density (P) within natural materials, which hinder achieving high refractive indices (n) at optical frequencies. The Maxwellian macroscopic description establishes a link between P and n, revealing a static limit in natural materials, restricting n to approximately 4.0 at optical frequencies. Optical metasurfaces, utilizing metallic colloids on a deep-subwavelength scale, offer a solution by unnaturally enhancing n through electric dipolar (ED) resonances. Self-assembly enables the creation of nanometer-scale metallic gaps between metallic nanoparticles (NPs), paving the way for achieving exceptionally high n at optical frequencies. This study focuses on assembling polyhedral gold (Au) NPs into a closely packed monolayer by rationally designing the polymeric ligand to balance attractive and repulsive forces, in that polymeric brush-mediated self-assembly of the close-packed Au NP monolayer is robustly achieved over a large-area. The resulting monolayer of Au nanospheres (NSs), nanooctahedras (NOs), and nanocubes (NCs) exhibits high macroscopic integrity and crystallinity, sufficiently enough for pushing n to record-high regimes. The study underlies the significance of capacitive coupling in achieving an unnaturally high n and explores fine-tuning Au NC size to optimize this coupling. The achieved n of 10.12 at optical frequencies stands as a benchmark, highlighting the potential of polyhedral Au NPs in advancing optical metasurfaces.
Subjects: Optics (physics.optics); Materials Science (cond-mat.mtrl-sci)
Cite as: arXiv:2403.16911 [physics.optics]
  (or arXiv:2403.16911v1 [physics.optics] for this version)

Submission history

From: Seungwoo Lee [view email]
[v1] Mon, 25 Mar 2024 16:29:49 GMT (16045kb)

Link back to: arXiv, form interface, contact.