We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

math.CO

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Mathematics > Combinatorics

Title: A Caro-Wei bound for induced linear forests in graphs

Abstract: A well-known result due to Caro (1979) and Wei (1981) states that every graph $G$ has an independent set of size at least $\sum_{v\in V(G)} \frac{1}{d(v) + 1}$, where $d(v)$ denotes the degree of vertex $v$. Alon, Kahn, and Seymour (1987) showed the following generalization: For every $k\geq 0$, every graph $G$ has a $k$-degenerate induced subgraph with at least $\sum_{v \in V(G)}\min\{1, \frac {k+1}{d(v)+1}\}$ vertices. In particular, for $k=1$, every graph $G$ with no isolated vertices has an induced forest with at least $\sum_{v\in V(G)} \frac{2}{d(v) + 1}$ vertices. Akbari, Amanihamedani, Mousavi, Nikpey, and Sheybani (2019) conjectured that, if $G$ has minimum degree at least $2$, then one can even find an induced linear forest of that order in $G$, that is, a forest where each component is a path.
In this paper, we prove this conjecture and show a number of related results. In particular, if there is no restriction on the minimum degree of $G$, we show that there are infinitely many ``best possible'' functions $f$ such that $\sum_{v\in V(G)} f(d(v))$ is a lower bound on the maximum order of a linear forest in $G$, and we give a full characterization of all such functions $f$.
Subjects: Combinatorics (math.CO); Discrete Mathematics (cs.DM)
Cite as: arXiv:2403.17568 [math.CO]
  (or arXiv:2403.17568v1 [math.CO] for this version)

Submission history

From: Gwenaël Joret [view email]
[v1] Tue, 26 Mar 2024 10:20:38 GMT (35kb)

Link back to: arXiv, form interface, contact.