We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Quantum-thermodynamic enhancements in continuous thermal machines require energetic coherence

Abstract: Quantum coherence has been shown to impact the operational capabilities of quantum systems performing thermodynamic tasks in a significant way, and yet the possibility of genuine coherence-enhanced thermodynamic operation remains unclear. Here we show that only the presence of energetic coherence -- coherence between levels with different energies -- in steady-state quantum thermal machines can lead to genuine thermodynamic advantage. On the other hand, engines showing coherence between degenerate levels, or subjected to noise-induced coherence, are shown to be systematically outperformed by classical stochastic engines using exactly the same set of (incoherent) resources. We illustrate our results with three prototypical models of heat engines and refrigerators and employ multi-objective optimization techniques to characterize quantum-enhanced regimes in connection with the thermodynamic uncertainty relation.
Comments: v1: 21 pages, 7 figures
Subjects: Quantum Physics (quant-ph); Statistical Mechanics (cond-mat.stat-mech)
Cite as: arXiv:2403.19280 [quant-ph]
  (or arXiv:2403.19280v1 [quant-ph] for this version)

Submission history

From: José Antonio Almanza Marrero [view email]
[v1] Thu, 28 Mar 2024 10:03:23 GMT (1349kb,D)

Link back to: arXiv, form interface, contact.