We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Quantum stochastic thermodynamics in the mesoscopic-leads formulation

Abstract: We introduce a numerical method to sample the distributions of charge, heat, and entropy production in open quantum systems coupled strongly to macroscopic reservoirs, with both temporal and energy resolution and beyond the linear-response regime. Our method exploits the mesoscopic-leads formulation, where macroscopic reservoirs are modeled by a finite collection of modes that are continuously damped toward thermal equilibrium by an appropriate Gorini-Kossakowski-Sudarshan-Lindblad master equation. Focussing on non-interacting fermionic systems, we access the time-resolved full counting statistics through a trajectory unraveling of the master equation. We show that the integral fluctuation theorems for the total entropy production, as well as the martingale and uncertainty entropy production, hold. Furthermore, we investigate the fluctuations of the dissipated heat in finite-time information erasure. Conceptually, our approach extends the continuous-time trajectory description of quantum stochastic thermodynamics beyond the regime of weak system-environment coupling.
Comments: 15+4 pages, 7+1 figures. Comments welcome!
Subjects: Quantum Physics (quant-ph); Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Statistical Mechanics (cond-mat.stat-mech)
Cite as: arXiv:2404.06426 [quant-ph]
  (or arXiv:2404.06426v1 [quant-ph] for this version)

Submission history

From: Laetitia Paula Bettmann [view email]
[v1] Tue, 9 Apr 2024 16:17:48 GMT (3117kb,D)

Link back to: arXiv, form interface, contact.