We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

physics.app-ph

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Physics > Applied Physics

Title: Non-hermitian magnonic knobbing between electromagnetically induced reflection and transparancy

Abstract: Manipulation of wave propagation through open resonant systems has attracted tremendous interest. When accessible to the open system, the system under study is prone to tempering to out of equilibrium, and a lack of reciprocity is the rule rather than the exception. Open systems correspond to non-hermitian Hamiltonians with very unique properties such as resulting exceptional points and ideal isolation. Here, we have found a highly sensitive modulation for the intersection of resonant patch antennas with respect to cavity magnonic coupling by means of an open coupling system of three resonant modes. Two types of crossings are implemented in this study: the first type of crossing remotely controls the sharp switching of the transmission line 's transmittance, while regulating the repulsive behavior of its zero-reflection states. The second type of crossing corresponds to the modulation of non-reciprocal phase transitions, which enables a more desirable isolation effect. Three different coupling models are realized by a non-Hermitian scattering Hamiltonian, revealing distinct spatial overlaps between modes. This elucidates that dissipative coupling of at least two modes to the environment is crucial for non-reciprocal transport. Our work not only reveals the versatility of cavity magnonic systems but also provides a way to design functional devices for general wave optics using patch antenna crossings.
Subjects: Applied Physics (physics.app-ph); Optics (physics.optics)
Cite as: arXiv:2404.11380 [physics.app-ph]
  (or arXiv:2404.11380v1 [physics.app-ph] for this version)

Submission history

From: Youcai Han [view email]
[v1] Wed, 17 Apr 2024 13:35:52 GMT (2672kb)

Link back to: arXiv, form interface, contact.