We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

hep-lat

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

High Energy Physics - Lattice

Title: Gauged Gaussian PEPS -- A High Dimensional Tensor Network Formulation for Lattice Gauge Theories

Abstract: Gauge theories form the basis of our understanding of modern physics - ranging from the description of quarks and gluons to effective models in condensed matter physics. In the non-perturbative regime, gauge theories are conventionally treated discretely as lattice gauge theories. The resulting systems are evaluated with path-integral based Monte Carlo methods. These methods, however, can suffer from the sign problem and do not allow for a direct evaluation of real-time dynamics. In this work, we present a unified and comprehensive framework for gauged Gaussian Projected Entangled Pair States (PEPS), a variational ansatz based on tensor networks. We review the construction of Hamiltonian lattice gauge theories, explain their similarities with PEPS, and detail the construction of the state. The estimation of ground states is based on a variational Monte Carlo procedure with the PEPS as an ansatz state. This sign-problem-free ansatz can be efficiently evaluated in any dimension with arbitrary gauge groups, and can include dynamical fermionic matter, suggesting new options for the simulation of non-perturbative regimes of gauge theories, including QCD.
Subjects: High Energy Physics - Lattice (hep-lat); Strongly Correlated Electrons (cond-mat.str-el); High Energy Physics - Theory (hep-th); Quantum Physics (quant-ph)
Cite as: arXiv:2404.13123 [hep-lat]
  (or arXiv:2404.13123v1 [hep-lat] for this version)

Submission history

From: Ariel Kelman [view email]
[v1] Fri, 19 Apr 2024 18:14:43 GMT (324kb,D)

Link back to: arXiv, form interface, contact.