We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

math.AP

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Mathematics > Analysis of PDEs

Title: Sharp quantitative stability of the Yamabe problem

Abstract: Given a smooth closed Riemannian manifold $(M,g)$ of dimension $N \ge 3$, we derive sharp quantitative stability estimates for nonnegative functions near the solution set of the Yamabe problem on $(M,g)$. The seminal work of Struwe (1984) \cite{S} states that if $\Gamma(u) := \|\Delta_g u - \frac{N-2}{4(N-1)} R_g u + u^{\frac{N+2}{N-2}}\|_{H^{-1}(M)} \to 0$, then $\|u-(u_0+\sum_{i=1}^{\nu} \mathcal{V}_i)\|_{H^1(M)} \to 0$ where $u_0$ is a solution to the Yamabe problem on $(M,g)$, $\nu \in \mathbb{N} \cup \{0\}$, and $\mathcal{V}_i$ is a bubble-like function. If $M$ is the round sphere $\mathbb{S}^N$, then $u_0 \equiv 0$ and a natural candidate of $\mathcal{V}_i$ is a bubble itself. If $M$ is not conformally equivalent to $\mathbb{S}^N$, then either $u_0 > 0$ or $u_0 \equiv 0$, there is no canonical choice of $\mathcal{V}_i$, and so a careful selection of $\mathcal{V}_i$ must be made to attain optimal estimates.
For $3 \le N \le 5$, we construct suitable $\mathcal{V}_i$'s and then establish the inequality $\|u-(u_0+\sum_{i=1}^{\nu} \mathcal{V}_i)\|_{H^1(M)}$ $ \le C\zeta(\Gamma(u))$ where $C > 0$ and $\zeta(t) = t$, consistent with the result of Figalli and Glaudo (2020) \cite{FG} on $\mathbb{S}^N$. In the case of $N \ge 6$, we investigate the single-bubbling phenomenon $(\nu = 1)$ on generic Riemannian manifolds $(M,g)$, proving that $\zeta(t)$ is determined by $N$, $u_0$, and $g$, and can be much larger than $t$. This exhibits a striking difference from the result of Ciraolo, Figalli, and Maggi (2018) \cite{CFM} on $\mathbb{S}^N$. All of the estimates presented herein are optimal.
Comments: All comments are welcome
Subjects: Analysis of PDEs (math.AP)
Cite as: arXiv:2404.13961 [math.AP]
  (or arXiv:2404.13961v1 [math.AP] for this version)

Submission history

From: Haixia Chen [view email]
[v1] Mon, 22 Apr 2024 08:08:07 GMT (45kb)

Link back to: arXiv, form interface, contact.