We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

gr-qc

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

General Relativity and Quantum Cosmology

Title: Bring the Heat: Tidal Heating Constraints for Black Holes and Exotic Compact Objects from the LIGO-Virgo-KAGRA Data

Abstract: We present the first constraints on tidal heating for the binary systems detected in the LIGO-Virgo-KAGRA (LVK) gravitational wave data. Tidal heating, also known as tidal dissipation, characterizes the viscous nature of an astrophysical body and provides a channel for exchanging energy and angular momentum with the tidal environment. Using the worldline effective field theory formalism, we introduce a physically motivated and easily interpretable parametrization of tidal heating valid for an arbitrary compact astrophysical object. We then derive the imprints of the spin-independent and linear-in-spin tidal heating effects of generic binary components on the waveform phases and amplitudes of quasi-circular orbits. Notably, the mass-weighted spin-independent tidal heating coefficient derived in this work, $\mathcal{H}_0$, is the dissipative analog of the tidal Love number. We constrain the tidal heating coefficients using the public LVK O1-O3 data. Our parameter estimation study includes two separate analyses: the first treats the catalog of binary events as binary black holes (BBH), while the second makes no assumption about the nature of the binary constituents and can therefore be interpreted as constraints for exotic compact objects. In the former case, we combine the posterior distributions of the individual BBH events and obtain a joint constraint of $-13 < \mathcal{H}_0 < 20$ at the $90\%$ credible interval for the BBH population. This translates into a bound on the fraction of the emitted gravitational wave energy lost due to tidal heating (or gained due to radiation enhancement effects) at $|\Delta E_H/\Delta E_{\infty}|\lesssim 3\cdot 10^{-3}$. Our work provides the first robust framework for deriving and measuring tidal heating effects in merging binary systems, demonstrating its potential as a powerful probe of the nature of binary constituents and tests of new physics.
Comments: 30+18 pages, 7 figures
Subjects: General Relativity and Quantum Cosmology (gr-qc); Cosmology and Nongalactic Astrophysics (astro-ph.CO); High Energy Astrophysical Phenomena (astro-ph.HE); High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Theory (hep-th)
Report number: MIT-CTP/5710
Cite as: arXiv:2404.14641 [gr-qc]
  (or arXiv:2404.14641v1 [gr-qc] for this version)

Submission history

From: Horng Sheng Chia [view email]
[v1] Tue, 23 Apr 2024 00:34:38 GMT (2633kb,D)

Link back to: arXiv, form interface, contact.