We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

astro-ph.GA

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Astrophysics > Astrophysics of Galaxies

Title: USmorph: An Updated Framework of Automatic Classification of Galaxy Morphologies and Its Application to Galaxies in the COSMOS Field

Abstract: Morphological classification conveys abundant information on the formation, evolution, and environment of galaxies. In this work, we refine the two-step galaxy morphological classification framework ({\tt\string USmorph}), which employs a combination of unsupervised machine learning (UML) and supervised machine learning (SML) techniques, along with a self-consistent and robust data preprocessing step. The updated method is applied to the galaxies with $I_{\rm mag}<25$ at $0.2<z<1.2$ in the COSMOS field. Based on their HST/ACS I-band images, we classify them into five distinct morphological types: spherical (SPH, 15,200), early-type disk (ETD, 17,369), late-type disk (LTD, 21,143), irregular disk (IRR, 28,965), and unclassified (UNC, 17,129). In addition, we have conducted both parametric and nonparametric morphological measurements. For galaxies with stellar masses exceeding $10^{9}M_{\sun}$, a gradual increase in effective radius from SPHs to IRRs is observed, accompanied by a decrease in the S\'{e}rsic index. Nonparametric morphologies reveal distinct distributions of galaxies across the $Gini-M_{20}$ and $C-A$ parameter spaces for different categories. Moreover, different categories exhibit significant dissimilarity in their $G_2$ and $\Psi$ distributions. We find morphology to be strongly correlated with redshift and stellar mass. The consistency of these classification results with expected correlations among multiple parameters underscores the validity and reliability of our classification method, rendering it a valuable tool for future studies.
Comments: Accepted by ApJS, 16 pages, 12 figures
Subjects: Astrophysics of Galaxies (astro-ph.GA)
Cite as: arXiv:2404.15701 [astro-ph.GA]
  (or arXiv:2404.15701v1 [astro-ph.GA] for this version)

Submission history

From: Guanwen Fang [view email]
[v1] Wed, 24 Apr 2024 07:38:16 GMT (3212kb,D)

Link back to: arXiv, form interface, contact.