We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cs.LG

Change to browse by:

References & Citations

DBLP - CS Bibliography

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Computer Science > Machine Learning

Title: Multi-layer random features and the approximation power of neural networks

Abstract: A neural architecture with randomly initialized weights, in the infinite width limit, is equivalent to a Gaussian Random Field whose covariance function is the so-called Neural Network Gaussian Process kernel (NNGP). We prove that a reproducing kernel Hilbert space (RKHS) defined by the NNGP contains only functions that can be approximated by the architecture. To achieve a certain approximation error the required number of neurons in each layer is defined by the RKHS norm of the target function. Moreover, the approximation can be constructed from a supervised dataset by a random multi-layer representation of an input vector, together with training of the last layer's weights.
For a 2-layer NN and a domain equal to an $n-1$-dimensional sphere in ${\mathbb R}^n$, we compare the number of neurons required by Barron's theorem and by the multi-layer features construction. We show that if eigenvalues of the integral operator of the NNGP decay slower than $k^{-n-\frac{2}{3}}$ where $k$ is an order of an eigenvalue, then our theorem guarantees a more succinct neural network approximation than Barron's theorem. We also make some computational experiments to verify our theoretical findings. Our experiments show that realistic neural networks easily learn target functions even when both theorems do not give any guarantees.
Comments: Accepted to Uncertainty in Artificial Intelligence (UAI) 2024
Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI)
Cite as: arXiv:2404.17461 [cs.LG]
  (or arXiv:2404.17461v1 [cs.LG] for this version)

Submission history

From: Rustem Takhanov [view email]
[v1] Fri, 26 Apr 2024 14:57:56 GMT (12024kb,D)

Link back to: arXiv, form interface, contact.