We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cond-mat.mes-hall

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Condensed Matter > Mesoscale and Nanoscale Physics

Title: Relations between normal state nonreciprocal transport and the superconducting diode effect in the trivial and topological phases

Abstract: Nonreciprocal transport effects can occur in the normal state of conductors and in superconductors when both inversion and time-reversal symmetry are broken. Here, we consider systems where magnetochiral anisotropy (MCA) of the energy spectrum due to an externally applied magnetic field results in a rectification effect in the normal state and a superconducting (SC) diode effect when the system is proximitised by a superconductor. Focussing on nanowire systems, we obtain analytic expressions for both normal state rectification and SC diode effects that reveal the commonalities - as well as differences - between these two phenomena. Furthermore, we consider the nanowire brought into an (almost) helical state in the normal phase or a topological superconducting phase when proximitised. In both cases this reveals that the topology of the system considerably modifies its nonreciprocal transport properties. Our results provide new insights into how to determine the origin of nonreciprocal effects and further evince the strong connection of nonreciprocal transport with the topological properties of a system.
Comments: Main text: 5 pages, 3 figures. Supplemental material: 4 pages, 1 figure
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Superconductivity (cond-mat.supr-con)
Cite as: arXiv:2404.17501 [cond-mat.mes-hall]
  (or arXiv:2404.17501v1 [cond-mat.mes-hall] for this version)

Submission history

From: Henry Legg [view email]
[v1] Fri, 26 Apr 2024 16:00:08 GMT (303kb,D)

Link back to: arXiv, form interface, contact.