We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Scaling Up the Quantum Divide and Conquer Algorithm for Combinatorial Optimization

Abstract: Quantum optimization as a field has largely been restricted by the constraints of current quantum computing hardware, as limitations on size, performance, and fidelity mean most non-trivial problem instances won't fit on quantum devices. Even proposed solutions such as distributed quantum computing systems may struggle to achieve scale due to the high cost of inter-device communication. To address these concerns, we propose Deferred Constraint Quantum Divide and Conquer Algorithm (DC-QDCA), a method for constructing quantum circuits which greatly reduces inter-device communication costs for some quantum graph optimization algorithms. This is achieved by identifying a set of vertices whose removal partitions the input graph, known as a separator; by manipulating the placement of constraints associated with the vertices in the separator, we can greatly simplify the topology of the optimization circuit, reducing the number of required inter-device operations. Furthermore, we introduce an iterative algorithm which builds on these techniques to find solutions for problems with potentially thousands of variables. Our experimental results using quantum simulators have shown that we can construct tractable circuits nearly three times the size of previous QDCA methods while retaining a similar or greater level of quality.
Subjects: Quantum Physics (quant-ph)
Cite as: arXiv:2405.00861 [quant-ph]
  (or arXiv:2405.00861v1 [quant-ph] for this version)

Submission history

From: Cameron Ibrahim [view email]
[v1] Wed, 1 May 2024 20:49:50 GMT (1117kb,D)

Link back to: arXiv, form interface, contact.