We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

quant-ph

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantum Physics

Title: Driven Multiphoton Qubit-Resonator Interactions

Abstract: We develop a general theory for multiphoton qubit-resonator interactions enhanced by a qubit drive. The interactions generate qubit-conditional operations in the resonator when the driving is near $n$-photon cross-resonance, namely, the qubit drive is $n$-times the resonator frequency. We pay special attention to the strong driving regime, where the interactions are conditioned on the qubit dressed states. We consider the specific case where $n=2$, which results in qubit-conditional squeezing (QCS). We propose to use the QCS protocol for amplifying resonator displacements and their superpositions. We find the QCS protocol to generate a superposition of orthogonally squeezed states following a properly chosen qubit measurement. We outline quantum information processing applications for these states, including encoding a qubit in a resonator and performing a quantum non-demolition measurement of the qubit inferred from the resonator's second statistical moment. Next, we employ a two-tone drive to engineer an effective $n$-photon Rabi Hamiltonian in any desired coupling regime. In other words, the effective coupling strengths can be tuned over a wide range, thus allowing for the realization of new regimes that have so far been inaccessible. Finally, we propose a multiphoton circuit QED implementation based on a transmon qubit coupled to a resonator via an asymmetric SQUID. We provide realistic parameter estimates for the two-photon operation regime that can host the aforementioned two-photon protocols. We use numerical simulations to show that even in the presence of spurious terms and decoherence, our analytical predictions are robust.
Comments: Updated circuit diagram and derivation, 14 pages, 7 figures
Subjects: Quantum Physics (quant-ph)
Cite as: arXiv:2405.01518 [quant-ph]
  (or arXiv:2405.01518v2 [quant-ph] for this version)

Submission history

From: Mohammad Ayyash [view email]
[v1] Thu, 2 May 2024 17:48:46 GMT (936kb,D)
[v2] Fri, 17 May 2024 00:07:36 GMT (865kb,D)

Link back to: arXiv, form interface, contact.