We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

q-bio.PE

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantitative Biology > Populations and Evolution

Title: Quantifying indirect and direct vaccination effects arising in the SIR model

Abstract: Vaccination campaigns have both direct and indirect effects that act to control an infectious disease as it spreads through a population. Indirect effects arise when vaccinated individuals block disease transmission in any infection chains they are part of, and this in turn can benefit both vaccinated and unvaccinated individuals. Indirect effects are difficult to quantify in practice, but here, working with the Susceptible-Infected-Recovered (SIR) model, they are analytically calculated in important cases, through pivoting on the Final Size formula for epidemics. Their relationship to herd immunity is also clarified. Furthermore, we identify the important distinction between quantifying indirect effects of vaccination at the "population level" versus the "per capita" individual level, which often results in radically different conclusions. As an important example, the analysis unpacks why population-level indirect effect can appear significantly larger than its per capita analogue. In addition, we consider a recently proposed epidemiological non-pharamaceutical intervention used over COVID-19, referred to as "shielding", and study its impact in our mathematical analysis. The shielding scheme is extended by inclusion of limited vaccination.
Subjects: Populations and Evolution (q-bio.PE)
Cite as: arXiv:2405.03707 [q-bio.PE]
  (or arXiv:2405.03707v1 [q-bio.PE] for this version)

Submission history

From: Lixin Lin [view email]
[v1] Fri, 3 May 2024 20:57:57 GMT (1023kb)

Link back to: arXiv, form interface, contact.