We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

q-bio.BM

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Quantitative Biology > Biomolecules

Title: Lipid-mediated hydrophobic gating in the BK potassium channel

Abstract: The large-conductance, calcium-activated potassium (BK) channel lacks the typical intracellular bundle-crossing gate present in most ion channels of the 6TM family. This observation, initially inferred from Ca$^{2+}$-free-pore accessibility experiments and recently corroborated by a CryoEM structure of the non-conductive state, raises a puzzling question: how can gating occur in absence of steric hindrance? To answer this question, we carried out molecular simulations and accurate free energy calculations to obtain a microscopic picture of the sequence of events that, starting from a Ca$^{2+}$-free state leads to ion conduction upon Ca$^{2+}$ binding. Our results highlight an unexpected role for annular lipids, which turn out to be an integral part of the gating machinery. Due to the presence of fenestrations, the "closed" Ca$^{2+}$-free pore can be occupied by the methyl groups from the lipid alkyl chains. This dynamic occupancy triggers and stabilizes the nucleation of a vapor bubble into the inner pore cavity, thus hindering ion conduction. By contrast, Ca$^{2+}$ binding results into a displacement of these lipids outside the inner cavity, lowering the hydrophobicity of this region and thus allowing for pore hydration and conduction. This lipid-mediated hydrophobic gating rationalizes several seemingly problematic experimental observations, including the state-dependent pore accessibility of blockers.
Subjects: Biomolecules (q-bio.BM); Biological Physics (physics.bio-ph); Chemical Physics (physics.chem-ph)
Cite as: arXiv:2405.04644 [q-bio.BM]
  (or arXiv:2405.04644v1 [q-bio.BM] for this version)

Submission history

From: Giovanni Di Muccio [view email]
[v1] Tue, 7 May 2024 20:08:49 GMT (18072kb,D)

Link back to: arXiv, form interface, contact.