We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

stat.ML

Change to browse by:

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Statistics > Machine Learning

Title: Batched Stochastic Bandit for Nondegenerate Functions

Abstract: This paper studies batched bandit learning problems for nondegenerate functions. We introduce an algorithm that solves the batched bandit problem for nondegenerate functions near-optimally. More specifically, we introduce an algorithm, called Geometric Narrowing (GN), whose regret bound is of order $\widetilde{{\mathcal{O}}} ( A_{+}^d \sqrt{T} )$. In addition, GN only needs $\mathcal{O} (\log \log T)$ batches to achieve this regret. We also provide lower bound analysis for this problem. More specifically, we prove that over some (compact) doubling metric space of doubling dimension $d$: 1. For any policy $\pi$, there exists a problem instance on which $\pi$ admits a regret of order ${\Omega} ( A_-^d \sqrt{T})$; 2. No policy can achieve a regret of order $ A_-^d \sqrt{T} $ over all problem instances, using less than $ \Omega ( \log \log T ) $ rounds of communications. Our lower bound analysis shows that the GN algorithm achieves near optimal regret with minimal number of batches.
Subjects: Machine Learning (stat.ML); Machine Learning (cs.LG)
Cite as: arXiv:2405.05733 [stat.ML]
  (or arXiv:2405.05733v1 [stat.ML] for this version)

Submission history

From: Yunlu Shu [view email]
[v1] Thu, 9 May 2024 12:50:16 GMT (2024kb,D)

Link back to: arXiv, form interface, contact.