We gratefully acknowledge support from
the Simons Foundation and member institutions.
Full-text links:

Download:

Current browse context:

cs.RO

Change to browse by:

References & Citations

DBLP - CS Bibliography

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo

Computer Science > Robotics

Title: Safety-Critical Planning and Control for Dynamic Obstacle Avoidance Using Control Barrier Functions

Abstract: Dynamic obstacle avoidance is a challenging topic for optimal control and optimization-based trajectory planning problems, especially when in a tight environment. Many existing works use control barrier functions (CBFs) to enforce safety constraints within control systems. Inside these works, CBFs are usually formulated under model predictive control (MPC) framework to anticipate future states and make informed decisions, or integrated with path planning algorithms as a safety enhancement tool. However, these approaches usually require knowledge of the obstacle boundary equations or have very slow computational efficiency. In this paper, we propose a novel framework to the iterative MPC with discrete-time CBFs (DCBFs) to generate a collision-free trajectory. The DCBFs are obtained from convex polyhedra generated in sequential grid maps, without the need to know the boundary equations of obstacles. Additionally, a path planning algorithm is incorporated into this framework to ensure the global optimality of the generated trajectory. We demonstrate through numerical examples that our framework enables a unicycle robot to safely and efficiently navigate through tight and dynamically changing environments, tackling both convex and nonconvex obstacles with remarkable computing efficiency and reliability in control and trajectory generation.
Comments: 9 pages, 4 figures. arXiv admin note: text overlap with arXiv:2210.04361
Subjects: Robotics (cs.RO); Optimization and Control (math.OC)
Cite as: arXiv:2403.19122 [cs.RO]
  (or arXiv:2403.19122v1 [cs.RO] for this version)

Submission history

From: Shuo Liu [view email]
[v1] Thu, 28 Mar 2024 03:30:25 GMT (1341kb,D)

Link back to: arXiv, form interface, contact.